

Характеристики электродвигателей для Четвертьоборотных приводов IQT, IQTM и IQTF 360°

Введение

Данное руководство содержит данные электродвигателей приводов серии IQT, при различных напряжениях питания.

Напряжение при 50Гц и 60Гц -

100, 110, 120, 200, 208, 220, 230, 240, 270, 380, 400, 415, 440, 460, 480, 500, 550, 575, 660 and 690 Допустимые отклонение напряжения +10/-15%, частоты +/-5%.

24B – Постоянного тока DC

(Допустимое отклонение 17 - 36 B DC)

При питании переменным током приводы IQT используют исключительно 2 фазы (фаза - нейтраль / фаза - фаза), которые внутренне преобразуются в напряжение постоянного тока для питания управляющей электроники и двигателя постоянного тока.

Для того чтобы достичь разнородности нагрузки по питанию на источнике трёхфазного питания, все приводы необходимо подключить к трём фазам аналогичным способом. Для подключения кабеля предусмотрены три клеммы питания в каждом приводе. Смотреть в электрической схеме привода.

Требования к конструкции

Двигатели, разработанные для приводов арматуры, имеют специфические требования. Так как не требуется непрерывное вращение для отсечной и арматуры с медленным перемещением или регулирующей арматуры, двигатели необходимо рассчитывать на непродолжительное вращение. Нагрузка на арматуре может значительно меняться по всему ходу арматуры, так как меняется процесс и состояние арматуры. Действительная нагрузка на арматуре не постоянна, от номинального момента для сдёргивания арматуры с закрытого положения, до перемещения с небольшим моментом по всему ходу арматуры.

Поэтому применять традиционную защиту электродвигателей к двигателям приводов некорректно, так как это может приводить к ложному отключению или отсутствию защиты. Роторк понимает особые требования к двигателям приводов и поэтому разработал двигатель к серии IQT и схему управления с учётом этих требований.

Конструкция двигателя IQT

Двигатели IQT имеют малую инерцию, являются двигателями с постоянным магнитом и питанием постоянного тока 24 В, с изоляцией по классу F, рабочим циклом S2 - 20% при 70% от номинального момента.

Управление защитой двигателя IQT

Основная защита двигателя — это защита ограничением крутящего момента. Измерением крутящего момента на выходе привода и сравнением с заданными ограничениями обеспечивается защита двигателя, и что более важно, арматуры.

Термостат обеспечивает защиту двигателя по температуре, если привод IQT работает чаше, чем заданный номинальный режим работы. Схема управления IQT так же выключит неподвижный двигатель в случае залипания арматуры. Стандартно встроена защита чередования фаз и потеря фазы Использование крутящего момента в качестве основного средства защиты двигателя, совместно с термостатом и защитой схемы управления IQT, которые являются требованием для традиционных методов защиты и имеют свойственные в себе недостатки, когда применяются к кратковременному режиму работы, устраняются в двигателях с переменной нагрузкой.

Определение размера кабеля питания

Минимальное требование для подбора кабеля это обеспечить питание при номинальном крутящем моменте с падением напряжения не более 10% от номинального напряжения питания.

Выбор предохранителя

Из-за специфического режима работы двигателя с учётом всесторонней защиты системы управления IQT, размер предохранителей необходимо подобрать для защиты кабеля питания привода.

Преобразователи частоты и ИБП

Где требуются системы ИБП, питание должно иметь незначительные гармонические искажения. Приводы рассчитаны на работу с источниками питания соответствующими стандартам, таким как EN 50160 - Характеристики напряжения электроэнергии, поставляемой государственными распределительными системами.

Новый уровень управления потоками

IQT, IQTM и IQTF Характеристики электродвигателей

Данные при номинальном моменте привода Данные верны как для питания 50 и 60 Гц Все данные округлённые.

Напряжение питания	IQT125			IQT250			IQT500			IQT1000			IQT2000		
	Ток Ампер	cosφ	Мощность кВт												
24 B DC	10.0		0.24	12.0		0.29	13.0		0.32	13.0		0.32	15.0		0.36
															1 1
100	3.5	0.95	0.33	4.5	0.95	0.43	4.5	0.95	0.43	4.7	0.95	0.45	5.3	0.95	0.50
110	3.2	0.95	0.33	4.1	0.95	0.43	4.1	0.95	0.43	4.3	0.95	0.45	4.8	0.95	0.50
120	2.9	0.95	0.33	3.7	0.95	0.43	3.7	0.95	0.43	3.9	0.95	0.45	4.4	0.95	0.50
200	1.7	0.95	0.33	2.2	0.95	0.43	2.2	0.95	0.43	2.4	0.95	0.45	2.6	0.95	0.50
208	1.7	0.95	0.33	2.2	0.95	0.43	2.2	0.95	0.43	2.4	0.95	0.45	2.6	0.95	0.50
20	1.7	0.95	0.33	2.2	0.95	0.43	2.2	0.95	0.43	2.4	0.95	0.45	2.6	0.95	0.50
230	1.5	0.95	0.33	1.9	0.95	0.43	1.9	0.95	0.43	2.1	0.95	0.45	2.3	0.95	0.50
240	1.5	0.95	0.33	1.9	0.95	0.43	1.9	0.95	0.43	2.1	0.95	0.45	2.3	0.95	0.50
270	1.5	0.95	0.33	1.9	0.95	0.43	1.9	0.95	0.43	2.1	0.95	0.45	2.3	0.95	0.50
															1 1
380	0.9	0.95	0.33	1.2	0.95	0.43	1.2	0.95	0.43	1-2	0.95	0.45	1.4	0.95	0.50
400	0.9	0.95	0.33	1.2	0.95	0.43	1.2	0.95	0.43	1-2	0.95	0.45	1.4	0.95	0.50
415	0.9	0.95	0.33	1.2	0.95	0.43	1.2	0.95	0.43	1-2	0.95	0.45	1.4	0.95	0.50
440	0.9	0.95	0.33	1.2	0.95	0.43	1.2	0.95	0.43	1-2	0.95	0.45	1.4	0.95	0.50
460	0.9	0.95	0.33	1-2	0.95	0.43	1.2	0.95	0.43	1-2	0.95	0.45	1.4	0.95	0.50
480	0.7	0.95	0.33	0.9	0.95	0.43	0.9	0.95	0.43	1.0	0.95	0.45	1.1	0.95	0.50
500	0.7	0.95	0.33	0.9	0.95	0.43	0.9	0.95	0.43	1.0	0.95	0.45	1.1	0.95	0.50
550	0.7	0.95	0.33	0.9	0.95	0.43	0.9	0.95	0.43	1.0	0.95	0.45	1.1	0.95	0.50
575	0.7	0.95	0.33	0.9	0.95	0.43	0.9	0.95	0.43	1.0	0.95	0.45	1.1	0.95	0.50
660	0.7	0.95	0.33	0.9	0.95	0.43	0.9	0.95	0.43	1.0	0.95	0.45	1.1	0.95	0.50
690	0.7	0.95	0.33	0.9	0.95	0.43	0.9	0.95	0.43	1.0	0.95	0.45	1.1	0.95	0.50

Полный перечень нашей всемирной сети продаж и сервиса представлен на нашем веб-сайте

www.**rotork**.com

UK Rotork p

tel +44 (0)1225 733200 fax +44 (0)1225 333467

fax +44 (0)1225 333467 email mail@rotork.com